

US009068197B2

(12) United States Patent

Mauro et al.

(10) **Patent No.:**

US 9,068,197 B2

(45) **Date of Patent:**

*Jun. 30, 2015

(54) TRANSLATION ENHANCER-ELEMENT DEPENDENT VECTOR SYSTEMS

(75) Inventors: Vincent P. Mauro, San Diego, CA (US);

Gerald M. Edelman, La Jolla, CA (US);

Wei Zhou, San Diego, CA (US)

(73) Assignee: The Scripps Research Institute, La

Jolla, CA (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 755 days.

This patent is subject to a terminal dis-

claimer.

(21) Appl. No.: 11/509,293

(22) Filed: Aug. 23, 2006

(65) Prior Publication Data

US 2007/0048776 A1 Mar. 1, 2007

Related U.S. Application Data

(60) Provisional application No. 60/711,149, filed on Aug. 24, 2005.

(51)	Int. Cl.	
	C12N 15/00	(2006.01)
	C07H 21/02	(2006.01)
	C07H 21/04	(2006.01)
	C12N 15/85	(2006.01)
	C12N 15/10	(2006.01)

(52) U.S. Cl.

C12N 15/67

(2006.01)

(58) Field of Classification Search

(56) References Cited

U.S. PATENT DOCUMENTS

6,524,792 B1 2/2003 Renner et al. 435/6

FOREIGN PATENT DOCUMENTS

WO	WO 99/25876 A1	5/1999
WO	WO 99/25896 A1	5/1999
WO	WO 01/55369 A1	8/2001

OTHER PUBLICATIONS

Owens et al., Identification of two short internal ribosome entry sites selected from libraries of random oligonucleotides Proc Natl Acad Sci U S A. Feb. 13, 2001; 98(4): 1471-1476.*

Krausslich et al 1987 Poliovirus proteinase 2A induces cleavage of eucaryotic initiation factor 4F polypeptide p. 220. J. Virol. 61, 2711-2718.*

Zhou et al., Isolation and identification of short nucleotide sequences that affect translation initiation in *Saccharomyces cerevisiae*. Proc Natl Acad Sci U S A. Apr. 15, 2003;100(8):4457-62. Epub Apr. 4, 2003 *

Chapell et al., Ribosomal tethering and clustering as mechanisms for translation initiation PNAS Nov. 28, 2006 vol. 103 No. 48 18077-18082.*

Zhou et al., "A Positive Feedback Vector for Identification of Nucleotide Sequences that Enhance Translation", *Proceedings of the National Academy of Sciences*, 102(18):6273-6278 (2005).

Fussenegger et al., "Regulated multicistronic expression technology for mammalian metabolic engineering", *Cytotechnology*, 28(1-3):111-125 (1998).

Vende et al., "Efficient translation of rotavirus mRNA requires simultaneous interaction of NSP3 with the eukaryotic translation initiation factor eIF4G and the mRNA 3' end", *J. Virol.*, 74(15):7064-7071 (2000)

Communication from European Patent Office from application No. EP 06 802 211.0.

Communication from European Patent Office from application No. EP 11 181 999.1.

Watson et al., "3' poly(A) Tails and 5' Methylguanosine Caps Are Added to the Ends of Eukaryotic mRNAs", Recombinant DNA, Third Edition, Genes and Genomes—a Short Course, by W.H. Freeman and Company, Chapter 5, pp. 121-122 (2007).

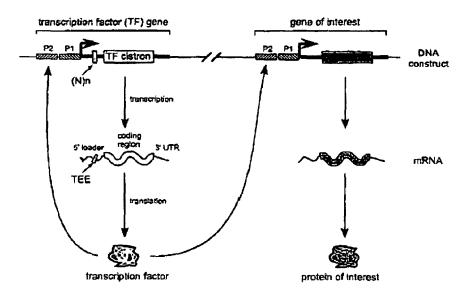
Communication pursuant to Article 94(3) EPC dated Aug. 1, 2014 for corresponding European Patent Application No. 11181999.1 (7 pgs.).

Canadian Office Action dated Jun. 5, 2014 for corresponding Canadian Patent Application No. 2,620,420 (3 pgs.).

Fussenegger, M. et al., "Autoregulated Multicistronic Expression Vectors Provide One-Step Cloning of Regulated Product Gene Expression in Mammalian Cells", Biotechnology Progress, vol. 13, No. 6, 1997, pp. 733-740.

Padilla-Noriega, L. et al., "Rotavirus Protein NSP3 Shuts Off Host Cell Protein Synthesis", Virology, vol. 298, No. 1, 2002, pp. 1-7. Communication pursuant to Article 94(3) EPC, dated Aug. 1, 2014, for EP Application No. 06802211.0.

* cited by examiner


Primary Examiner — Maria Leavitt

(74) Attorney, Agent, or Firm — Cooley LLP; Ivor R. Elrifi; Christina K. Stock

(57) **ABSTRACT**

A translation enhancer-driven positive feedback vector system is disclosed which is designed to facilitate identification of a Translational Enhancer Element (TEE) and to provide a means for overexpression of gene products. The system exploits both transcriptional and translational approaches to control the expression levels of genes and/or gene products. Methods are also disclosed for screening libraries of random nucleotide sequences to identify translational elements and for overproduction of proteins, which have uses in both research and industrial environments.

8 Claims, 12 Drawing Sheets

Promoter elements:

- minimal promoter (TATA)
 - regulatable promoter

P2: - upstream activating sequence (UAS; one to multiple copies)

- T7 promoter
- other transcription elements

Transcription factor genes:

- GAL4, GAL4/VP16
- T7 RNA polymerase other transcription factors

Genes of interest:

- fluorescent protein genes (e.g. enhanced green fluorescent protein; EGFP)
 luciferase genes (Renilla or Photinus)
- therapeutic protein (e.g. monoclonal antibodies)

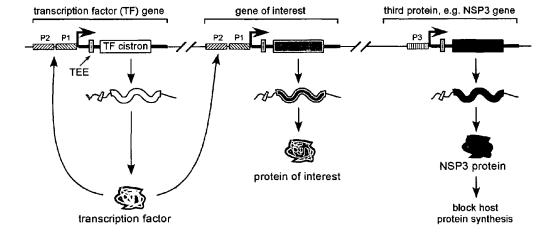


Figure 2

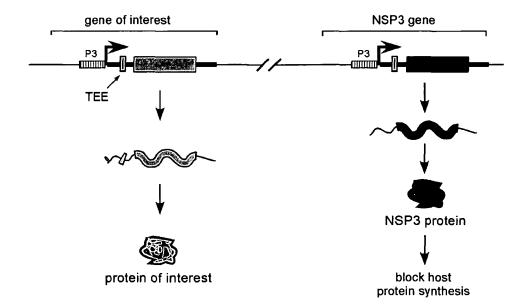


Figure 3

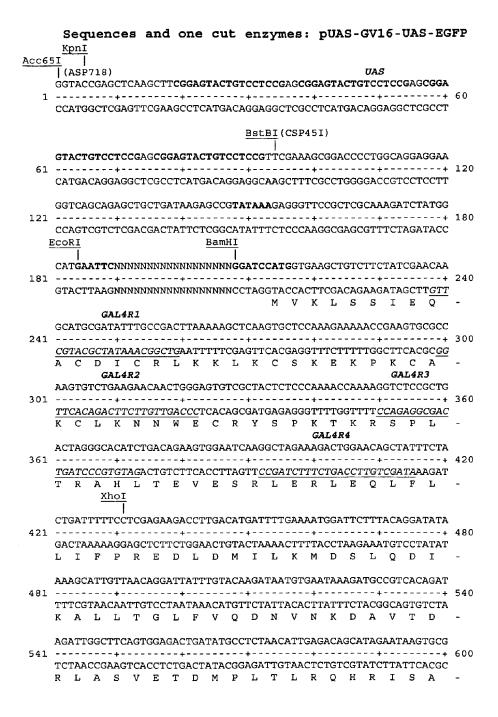


Figure 4

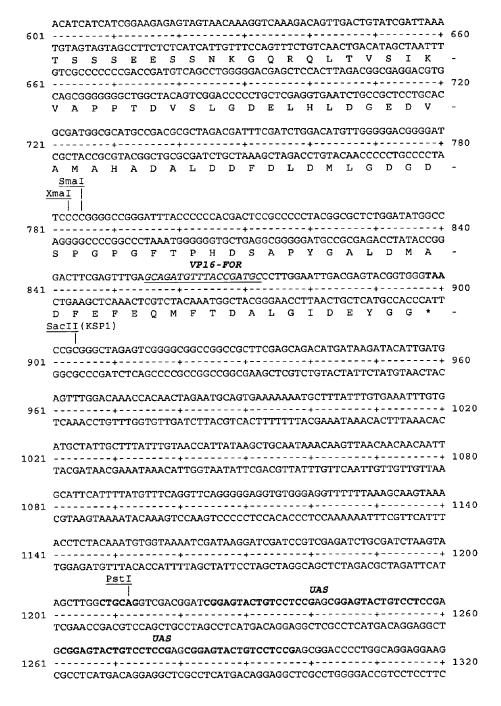


Figure 4 (cont'd)

1321	CAGTCGTCTCGACGACTATTCTCGGCATATTTCTCCCCAAGGCGAGTACCGTTCCCCGTCA	1380										
1381	GGTCTCGGGATCTGAGCTTGGCATTCCGGTACTGTTGGTAAACCATGGTGAGCAAGGGCG	1440										
	CCAGAGCCCTAGACTCGAACCGTAAGGCCATGACAACCATTTGGTACCACTCGTTCCCGC M V S K G E AGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGACCTGGACGGCGACGTAAACGGCC	-										
1441	TCCTCGACAAGTGGCCCCACCACGGGTAGGACCAGCTCGACCTGCCGCTGCATTTGCCGG	1500										
	E L F T G V V P I L V E L D G D V N G H ACAAGTTCAGCGTGTCCGGCGAGGGCGAGGCGATGCCACCTACGGCAAGCTGACCCTGA	-										
1501	TGTTCAAGTCGCACAGGCCGCTCCCGCTCCCGCTACGGTGGATGCCGTTCGACTGGACT											
	K F S V S G E G E G D A T Y G K L T L AGTTCATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCCACCCTCGTGACCACCCTGA	χ -										
1561	TCAAGTAGACGTGGTGGCCGTTCGACGGGCACGGGACCGGGTGGGAGCACTGGTGGACT F I C T T G K L P V P W P T L V T T L T	1620										
	CCTACGGCGTGCAGTGCTTCAGCCGCTACCCCGACCACATGAAGCAGCACGACTTCTTCA											
1621	GGATGCCGCACGTCACGAAGTCGGCGATGGGGCTGGTGTACTTCGTCGTCGTGCTGAAGAAGT Y G V Q C F S R Y P D H M K Q H D F F K											
1601	AGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCAAGGACGACGGCA											
1001	${\tt TCAGGCGGTACGGGCTTCCGATGCAGGTCCTCGCGTGGTAGAAGAAGTTCCTGCTGCCGT}$	-										
1741	ACTACAAGACCCGCGCGAGGTGAAGTTCGAGGGCGACACCCTGGTGAACCGCATCGAGC											
	TGATGTTCTGGGCGCGCTCCACTTCAAGCTCCCGCTGTGGGACCACTTGGCGTAGCTCG Y K T R A E V K F E G D T L V N R I E L											
1801	TGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGCTGGAGTACAACT	1860										
	ACTTCCCGTAGCTGAAGTTCCTCCTGCCGTTGTAGGACCCCGTGTTCGACCTCATGTTGA K G I D F K E D G N I L G H K L E Y N Y	-										
1861	ACAACAGCCACAACGTCTATATCATGGCCGACAAGCAGAAGAACGGCATCAAGGTGAACT	1920										
	TGTTGTCGGTGTTGCAGATATAGTACCGGCTGTTCGTCTTCTTGCCGTAGTTCCACTTGA N S H N V Y I M A D K Q K N G I K V N F	-										
1921	TCAAGATCCGCCACAACATCGAGGACGGCAGCGTGCAGCTCGCCGACCACTACCAGCAGA	1980										
	AGTTCTAGGCGGTGTTGTAGCTCCTGCCGTCGAGCGGCTGGTGATGGTCGTCT K I R H N I E D G S V Q L A D H Y Q Q N	-										

 $\tt GTCAGCAGAGCTGCTGATAAGAGCCGTATAAAGAGGGTTCCGCTCATGGCAAGGGGCAGT$

Figure 4 (cont'd)

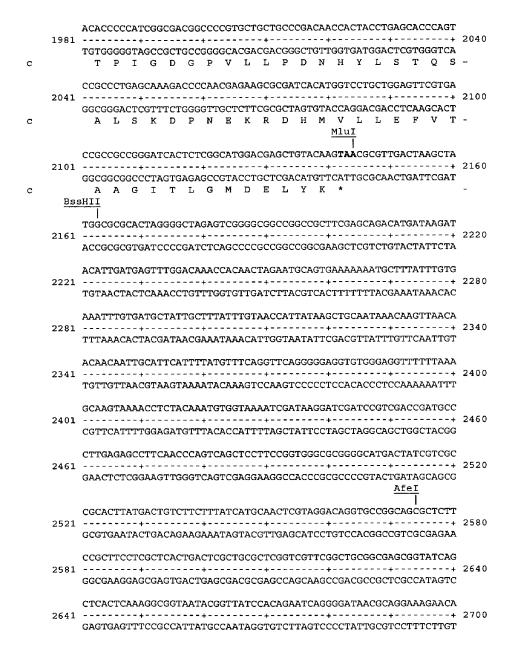


Figure 4 (cont'd)

2701	TGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAAGGCCGCGTTGCTGGCGTTTT	2760							
2701	ACACTCGTTTTCCGGTCGTTTTCCGGTCCTTGGCATTTTTCCGGCGCAACGACCGCAAAA	2700							
2761	TCCATAGGCTCCGCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGC								
2,01	${\tt AGGTATCCGAGGCGGGGGGACTGCTCGTAGTGTTTTTAGCTGCGAGTTCAGTCTCCACCG}$								
2821	GAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCT	2880							
	$\tt CTTTGGGCTGTCCTGATATTTCTATGGTCCGCAAAGGGGGACCTTCGAGGGAGCACGCGA$								
2881	CTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCG	2940							
	${\tt GAGGACAAGGCTGGGACGGCGAATGGCCTATGGACAGGCGGAAAGAGGGAAGCCCTTCGC}$								
2941	TGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCA	3000							
	ACCGCGAAAGAGTATCGAGTGCGACATCCATAGAGTCAAGCCACATCCAGCAAGCGAGGT								
3001	AGCTGGGCTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACT	3060							
	TCGACCCGACACGTGCTTGGGGGGGCAAGTCGGGCTGGCGACGCGGAATAGGCCATTGA								
3061	ATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCCACTGGTA	3120							
	TAGCAGAACTCAGGTTGGGCCATTCTGTGCTGAATAGCGGTGACCGTCGTCGGTGACCAT								
3121	ACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTA	3180							
	TGTCCTAATCGTCTCGCTCCATACATCCGCCACGATGTCTCAAGAACTTCACCACCGGAT								
3181	ACTACGGCTACACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCT	3240							
	TGATGCCGATGTGATCTTCTTGTCATAAACCATAGACGCGAGACGACTTCGGTCAATGGA TCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAACCACCGCTGGTAGCGGTGGTT								
3241	AGCCTTTTTCTCAACCATCGAGAACTAGGCCGTTTGTTTG	3300							
	TTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGA								
3301	AAAAACAAACGTTCGTCGTCTAATGCGCGTCTTTTTTTCCTAGAGTTCTTCTAGGAAACT	3360							
	TCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCA								
3361	AGAAAAGATGCCCCAGACTGCGAGTCACCTTGCTTTTGAGTGCAATTCCCTAAAACCAGT	3420							
	TGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAAATGAAGTTTTAAAT								
3421	^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~								

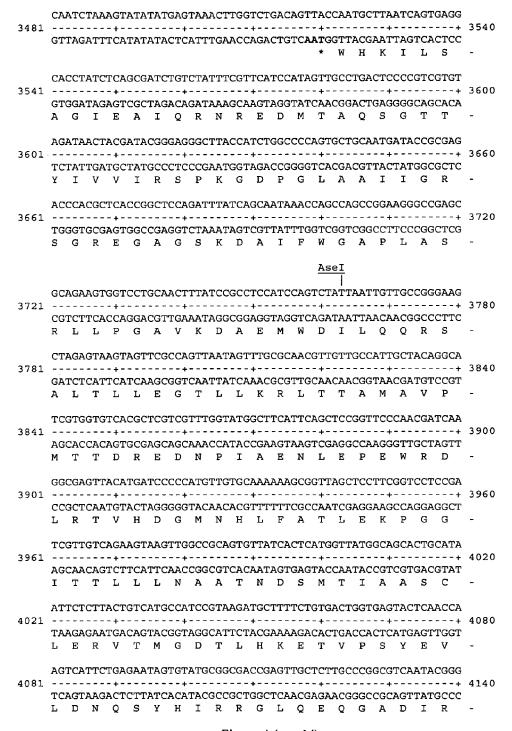


Figure 4 (cont'd)

	XmnI									
4141	ATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCTTCGG	4200								
	TATTATGGCGCGGTGTATCGTCTTGAAATTTTCACGAGTAGTAACCTTTTGCAAGAAGCC S L V A G C L L V K F T S M M P F R E E	-								
4201	GGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGT									
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-								
4261	CACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAG	4320								
	GTGGGTTGACTAGAAGTCGTAGAAAATGAAAGTGGTCGCAAAGACCCACTCGTTTTTGTC A G L Q D E A D K V K V L T E P H A F V	-								
4321	CAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATAC CTTCCGTTTTACGGCGTTTTTCCCTTATTCCCGCTGTGCCTTTACAACTTATGAGTATG P L C F A A F F P I L A V R F H Q I S M	4380								
	TCTTCCTTTTCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACA									
4381	AGAAGGAAAAAGTTATAATAACTTCGTAAATAGTCCCAATAACAGAGTACTCGCCTATGT	4440								
4441	TATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAG	4500								
4501	ATAAACTTACATAAATCTTTTTATTTGTTTATCCCCAAGGCGCGTGTAAAGGGGCTTTTC TGCCACCTGACGCGCCCTGTAGCGGCGCATTAAGCGCGCGGGGTGTGGTTGCTGGTACGCGCA+ ACGGTGGACTGCGCGGGACATCGCCGCGTAATTCGCGCCGCCACCACCACCAATGCGCGT									
4561	GCGTGACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCCCTTCCCT	4620								
	CGCACTGGCGATGTGAACGGTCGCGGGATCGCGGGCGAGGAAAGAAGAAGGGAAGGA . TTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTTTAGGGT									
4621	AAGAGCGGTGCAAGCGGCCGAAAGGGGCAGTTCGAGATTTAGCCCCCGAGGGAAATCCCA									
4681	TCCGATTTAGTGCTTTACGGCACCTCGACCCCAAAAAACTTGATTAGGGTGATGGTTCAC	4740								
	AGGCTAAATCACGAAATGCCGTGGAGCTGGGGTTTTTTGAACTAATCCCACTACCAAGTG GTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCT									
4741	CATCACCCGGTAGCGGGACTATCTGCCAAAAAGCGGGAAACTGCAACCTCAGGTGCAAGA	4800								
4801	TTAATAGTGGACTCTTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGTCTATTCTT									
-400T	AATTATCACCTGAGAACAAGGTTTGACCTTGTTGTGAGTTGGGATAGAGCCAGATAAGAA	1000								

Figure 4 (cont'd)

4861		4920
	AAAAATTTAACGCGAATTTTAACAAAATATTAACGCTTACAATTTGCCATTCGCCATTCA	
4921	TTTTTAAATTGCGCTTAAAATTGTTTTATAATTGCGAATGTTAAACGGTAAGCGGTAAGT	4980
4981	##GB4 GGCTGCGCAACTGTTGGGAAGGGCGATCGGTGCGGGCCTCTTCGCTATTACGCCAGCCCA	5040
	${\tt CCGACGCTTGACAACCCTTCCCGCTAGCCACGCCCGGAGAAGCGATAATGCGGTCGGGT}$	AAACGGCTAAAGCCGGATAACCAATTTTTACTCGACTAAATTG TTTTAACAAAATATTAACGCTTACAATTTGCCATTCGCATTCA AAAATTGTTTTATAATTGCGAATGTTAAACGGTAAGC HRGB4 GGAAGGGCGATCGGTGCGGGCCTCTTCGCTATTACGCCAGCCCA CCTTCCCGCTAGCCACGCCCGGAGAAGCGATAATGCGGTCGGGT HRGB3 AAGTAATATTAAGGTACGGGAGGTACTTGGAGCGGCCGCAATAA PTCATTATAATTCCATGCCCTCCATGAACCTCGCCGGCGTTATT TTACATCTGTGTTTGTTTTGT
		
5041	AGCTACCATGATAAGTAAGTAATATTAAGGTACGGGAGGTACTTGGAGCGGCCGCAATAA	5100
	${\tt TCGATGGTACTATTCATTCATTATAATTCCATGCCCTCCATGAACCTCGCCGGCGTTATT}$	
5101	AATATCTTTATTTCATTACATCTGTGTGTGTGTTTTTTGTGTGAATCGA	5160
	${\tt TTATAGAAATAAAAGTAATGTAGACACACAAACCAAAAAAACACACTTAGCTATCATGATTG}$	
5161	HRGB2 ATACGCTCTCCATCAAAACAAAACGAAACAAAACAAACTAGCAAAATAGGCTGTCCCCAG	5220
3101	${\tt TATGCGAGAGGTAGTTTTGTTTTGCTTTGTTTTGATCGTTTTATCCGACAGGGGTC}$	
	HRGB1	
5221	, , ,	
	ACGTTCACGTCCACGGTCTTGTAAAGAGATAGCTAT	

Enzymes that do cut and were not excluded:

AarI BmgBI BstEII PstI	BsaAI DraIII	AfeI BsaHI EcoRI SapI	AhdI BsaXI FalI SmaI	AloI BseRI KpnI XhoI	AlwNI BseYI MluI XmaI	AseI BssHII NotI XmnI	BamHI BstBI PfoI
Enzymes	that do no	ot cut:					
AatII BaeI BsiWI EcoNI NheI PpuMI SexAI	BbeI BsmBI EcoOl09I NruI PspOMI SfiI	AgeI BbvCI BspEI EcoRV NsiI PspXI SfoI XbaI	AlfI BclI BstAPI FspAI PacI PsrI SgrAI XcmI	ApaI BfrBI BstXI KasI PasI PvuII SnaBI ZraI	AscI BlpI BstZ17I MscI PflMI RsrII SpeI	Bmt I Bsu36I NarI PmeI SanDI	AvrII BplI CspCI NdeI PmlI SbfI StuI
Enzymes	excluded;	MinCuts:	1 MaxCu	ts: 1			
AccI AvaI BglII BsaWI BspMI BtgZI EciI HincII NcoI PvuI StyI	AclI BanI Bme1580I BsaXI BsrBI BtsI EcoICRI HindIII NgoMIV SacI TaqII	AcuI BanII BmrI BsgI BsrDI ClaI Eco57MI HpaI NspI SalI TaqII	AflIII BbsI BpmI BsiEI BsrFI DraI FseI MfeI PciI Scal TatI	AleI BcgI Bpul0I BsiHKAI BsrGI DrdI FspI MmeI PpiI SfcI	AloI BcgI BpuEI BsmI BssSI EaeI HaeII MslI PpiI SmlI	ApaLI BciVI BsaI Bsp1286I BstYI EagI Hin4I MspA1I PshAI SphI	ApoI BglI BsaBI BspHI EarI Hin4I NaeI PsiI SspI

TRANSLATION ENHANCER-ELEMENT DEPENDENT VECTOR SYSTEMS

CROSS REFERENCE TO RELATED APPLICATION(S)

This application claims the benefit of priority under 35 U.S.C. §119(e) of U.S. Ser. No. 60/711,149, filed Aug. 24, 2005, the entire content of which is incorporated herein by reference

INCORPORATION BY REFERENCE OF SEQUENCE LISTING

The contents of the text file named "PROO-007001US_Sequence_Listing_ST25.txt," which was created on May 13, 2015 and is 20 KB in size, are hereby incorporated by reference in their entirety.

GRANT INFORMATION

This invention was made with support from NIH Grant No. GM 61725. The government has certain rights in this invention.

FIELD OF INVENTION

The present invention relates generally to vector constructs, and more specifically to positive feedback vector 30 constructs bearing translational enhancer elements (TEEs) in combination with transcriptional elements and genes encoding transcription factors, where such constructs may be used to identify other TEEs and to modulate levels of protein expression.

BACKGROUND OF THE INVENTION

Eukaryotic mRNAs can initiate translation by either cap-dependent or cap-independent mechanisms. Presently, the relative contributions of these mechanisms to the proteome are unknown; however, some studies suggest that cap-independent mechanisms may account for the translation of many mRNAs. For some mRNAs, cap-independent translation is facilitated by sequence elements termed internal ribosome entry sites (IRESes). IRESes were first discovered in uncapped picornavirus RNAs and were subsequently identified in other viral and cellular mRNAs from mammals, insects, and yeast. For some mRNAs, IRESes facilitate translation when cap-dependent initiation is less efficient or blocked. Internal initiation also facilitates the translation of particular mRNAs with 5' leaders that are encumbered by numerous upstream AUGs or RNA secondary structures.

A variety of evidence suggests that different IRESes vary 55 in length, sequence composition, and in their requirements for initiation factors or other trans-acting factors, suggesting that internal initiation of translation occurs by a number of different mechanisms. Some IRESes are modular in composition. For example, an IRES module from the 5' leader of the 60 Gtx homeodomain mRNA showed that maximal activity was obtained with sequences of 7 nucleotides. Various lines of evidence suggested that the mechanism underlying the activity of this sequence element involves base pairing to a complementary sequence of 18S rRNA. In another study, a 65 22-nt IRES was identified in the 5' leader of the Rbm3 mRNA. In addition, it has been reported that the 5' leader of the

2

thymidine kinase mRNA contains an IRES-element and that the 5' leader of the c-myc mRNA contains two short IRES elements.

The short size of some IRES/TEE modules suggests that they may be prevalent within mRNA populations.

Some IRES elements can also function as translation enhancer elements (TEEs), i.e., they can enhance translation in the context of a monocistronic mRNA. However, not all TEEs are IRESes and not all IRESes are TEEs.

SUMMARY OF THE INVENTION

The present invention describes a series of vectors designed to select for translational enhancer elements and overexpression of proteins of interest, and includes methods for the use of such vectors.

In one embodiment, a nucleic acid vector including a first construct that includes two or more first transcriptional elements, a first cistron encoding a transcription factor, and one or more first translational enhancer elements (TEEs), where the transcription factor amplifies the transcription of at least one cistron of the first construct is envisaged.

In a related aspect, the vector may include, but is not limited to, at least one cistron on one or more second constructs including at least one transcriptional unit. In a further related aspect, the first construct and the at least one transcriptional unit of one or more second constructs include transcriptional elements that are targets for the transcription factor encoded by the first cistron.

In a related aspect, such vectors may encode a gene product that is a reporter protein, a therapeutic protein, an enzyme, an antigen, a structural protein, or an antibody.

In another aspect, at least one gene product blocks host protein synthesis. In a related aspect, the gene product may include, but is not limited to, NSP3, L-proteinase, or proteinase 2A.

In one aspect, the vector includes at least one TEE that is resistant to the activity of the product which blocks host protein synthesis, where the vector may contain transcriptional elements including, but not limited to, minimal promoters, regulatable promoters, upstream activating sequences, and bacteriophage RNA polymerase specific promoters.

In another embodiment, a nucleic acid vector including a first construct which includes a first transcriptional element, a first cistron encoding a first gene product, and a first translational enhancer element (TEE), wherein the TEE is resistant to an activity of a second gene product which blocks host protein synthesis is envisaged.

In a related aspect, TEEs include, HCV-IRES, IRESes, and IRES-elements, including, but not limited to, Gtx sequences (e.g., Gtx9-nt, Gtx8-nt, Gtx7-nt). In another related aspect, TEEs may include N-18 random nucleotides which when operably linked to a cistron, increase the amount of protein induced per unit mRNA.

In one embodiment, a method of identifying a translational enhancer element (TEE) is envisaged including inserting nucleotides from a library of nucleotides into a vector including a first construct which includes two or more first transcriptional elements, and a first cistron encoding a transcription factor, transfecting a cell with the vector, and determining the level of gene product translation from one or more second constructs in the transfected cell, where determining an enhanced level of translation of the gene product in the presence of the inserted nucleotides is indicative of the presence of at least one TEE.

In a related aspect, the method may further include cotransfecting the cell with one or more second vectors, wherein the second vectors include the one or more second constructs.

In another embodiment, a method of overexpressing a gene is envisaged including, transfecting a cell with a vector ⁵ including a first construct including two or more first transcriptional elements, a first cistron encoding a transcription factor, and one or more first translation enhancer elements (TEEs), and expressing a gene product from one or more second constructs including a second TEE, where the resulting level of gene product expressed from the second construct is enhanced in the presence of the first and second TEEs.

In a related aspect, the method may further include cotransfecting the cell with one or more second vectors including the one or more second constructs. In a further related aspect, the method may further include expressing a gene from a third construct including a third TEE, where the gene from the third construct encodes one or more gene products which block host protein synthesis. In a related aspect, the method may further include co-transfecting the cell with a 20 third vector including the third construct.

In one embodiment, a method of overexpressing a gene is envisaged including transfecting a cell with a vector including a first construct including at least one first transcriptional element, a first cistron encoding a first gene product, and at least one translational enhancer element (TEE) and expressing a gene from one or more second constructs encoding a protein which blocks host protein synthesis, where the resulting level of gene product expressed from the first construct is enhanced in the presence of the blocking protein.

Exemplary methods and compositions according to this invention, are described in greater detail below.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a translation enhancer-driven positive feedback vector. A schematic representation of the positive feedback vector is shown along with the various promoter (P1) and transcriptional enhancer (P2) sequences, transcription factor (TF) genes, and a protein of interest. The transcription factor gene and the gene of interest may be on the same plasmid or on different plasmids. For the selection application, a random nucleotide sequence (N), n nucleotides in length is present in the 5' leader of the transcription factor mRNA. A sequence that functions as a translational enhancer element (TEE) will facilitate the translation of this mRNA. The encoded transcription factor will then bind to sites in the promoters of the two genes and increase their transcription.

FIG. 2 illustrates a translation enhancer-driven positive feedback vector with a third protein to block host protein 50 synthesis. The first two genes (transcription factor gene and gene of interest) are the same as in FIG. 1 except that all three mRNAs contain a TEE in their 5' leader. The third protein (e.g., the Rotavirus NSP3 protein) will increase the translation of the first two encoded mRNAs by blocking the trans- 55 lation of host mRNAs and reducing the competition from them. The third gene is under the transcriptional control of promoter P3, which is either a constitutive promoter or an inducible promoter. P3 may also include promoter elements P1 and P2. For the selection application, the mRNAs for the 60 gene of interest and third protein will contain a known TEE, while the transcription factor gene will contain a random nucleotide sequence. In this scenario, the TEE is resistant to the activity of the third protein. For a protein production application, all three genes may contain a known TEE that is 65 resistant to the activity of the third protein. The three genes may be on one, two, or three different plasmids.

4

FIG. 3 illustrates a protein overexpression vector. The first gene encodes the gene of interest. As shown in FIG. 2, each gene contains a TEE in its 5' leader. In this scenario, the TEE is resistant to the activity of the other encoded protein (e.g., NSP3). The two genes may be on one or two different plasmids

FIG. 4 shows a restriction map for a positive feedback reporting vector (SEQ ID NO: 1). Sequences in bold represent: 1) promoter sequences, including TATA boxes and upstream activating sequences (UAS); 2) GAL4R1-GAL4R4, primer sequences for PCR amplification; 3) ATG and TAA, start and stop translation sequences, respectively; and 4) HRGB1-HRGB4, primer sequences for PCR amplification.

FIG. 5 shows one-cut enzymes for pUAS-GV16-UAS-EGFP (SEQ ID NO: 1).

DETAILED DESCRIPTION OF THE INVENTION

Before the present compositions and methods are described, it is understood that this invention is not limited to the particular methodology, protocols, and reagents described as these may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention which will be described by the appended claims.

It must be noted that as used herein and in the appended claims, the singular forms "a", "an", and "the" include plural reference unless the context clearly dictates otherwise. Thus, for example, reference to "a cell" includes a plurality of such cells, reference to "a protein" includes one or more proteins and equivalents thereof known to those skilled in the art, and so forth.

Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, the methods, devices, and materials are now described. All publications mentioned herein are incorporated herein by reference for the purpose of describing and disclosing the proteins, nucleic acids, and methodologies which are reported in the publications which might be used in connection with the invention. Nothing herein is to be construed as an admission that the invention is not entitled to antedate such disclosure by virtue of prior invention.

As used herein, "translational enhancer element (TEE)," including grammatical variations thereof, means cis-acting sequences that increase the amount of protein induced per unit mRNA. In a related aspect, TEEs include, HCV-IRES, IRESes, and IRES-elements, including, but not limited to, Gtx sequences (e.g., Gtx9-nt, Gtx8-nt, Gtx7-nt). In another related aspect, TEEs may include N-18 random nucleotides which when operably linked to a cistron, increase the amount of protein induced per unit mRNA.

In a further related aspect, sequences for such elements include, but are not limited to, GenBank accession numbers AX205123 and AX205116 (Gtx IRES element), D17763 (HCV-IRES, 5'-untranslated region).

As used herein, "cistron" including grammatical variations thereof, means a unit of DNA that codes for a single polypeptide or protein.

As used herein, "transcriptional unit," including grammatical variations thereof, means the segment of DNA within which the synthesis of RNA occurs.

As used herein, "nucleotide sequence," "nucleic acid sequence," "nucleic acid," or "polynucleotide," refers to a deoxyribonucleotide or ribonucleotide polymer in either single- or double-stranded form, and unless otherwise limited, encompasses known analogs of natural nucleotides that 5 hybridize to nucleic acids in a manner similar to naturally-occurring nucleotides. Nucleic acid sequences can be, e.g., prokaryotic sequences, eukaryotic mRNA sequences, cDNA sequences from eukaryotic mRNA, genomic DNA sequences from eukaryotic DNA (e.g., mammalian DNA), and synthetic 10 DNA or RNA sequences, but are not limited thereto.

In a related aspect, synthetic methods for preparing a nucleotide sequence include, for example, the phosphotriester and phosphodiester methods (see Narang et al., Meth. Enzymol. 68:90, (1979); U.S. Pat. No. 4,356,270, U.S. Pat. 15 No. 4,458,066, U.S. Pat. No. 4,416,988, U.S. Pat. No. 4,293, 652; and Brown et al., Meth Enzymol 68:109, (1979), each of which is incorporated herein by reference).

As used herein, "promoter" including grammatical variations thereof, means a nucleic acid sequence capable of 20 directing transcription. A variety of promoter sequences are known in the art. For example, such elements can include, but are not limited to, TATA-boxes, CCAAT-boxes, bacteriophage RNA polymerase specific promoters (T7: TAATAC-GACTCACTATAGG (SEQ ID NO: 4); SP6: ATTTAGGT-25 GACACTATAGA (SEQ ID NO: 5); and T3: AATTAACCCTCACTAAAGG (SEQ ID NO: 6)), an SP1 site (GGGCGG), and a cyclic AMP response element (TGACGTCA).

As used herein, "transcriptional element," including grammatical variations thereof, means a cis-acting site on DNA that allows for initiation or stimulation of initiation of transcription, usually through recognition by a transcription factor. For example, such elements exist in motifs including, but not limited to, CACGTG (c-Myc), TGAc/gTc/aA (c-Fos), 35 and t/aGATA (GATA). In a related aspect, the vector may contain one or more transcriptional elements comprising one or more upstream activating sequences (UAS), including but not limited to, the consensus GAGTACTGTCCTCCGAGCG (SEQ ID NO: 7).

As used herein, "transcription factor," including grammatical variations thereof, means any protein required to initiate or regulate transcription. For example, such factors include, but are not limited to, c-Myc, c-Fos, c-Jun, CREB, cEts, GATA, GAL4, GAL4/Vp16, c-Myb, MyoD, NF-κB, bacteriophage-specific RNA polymerases, Hif-1, and TRE.

In a further related aspect, sequences for such factors include, but are not limited to, GenBank accession numbers K02276 (c-Myc), K00650 (c-fos), BC002981 (c-jun), M27691 (CREB), X14798 (cEts), M77810 (GATA), K01486 50 (GAL4), AY136632 (GAL4/Vp16), M95584 (c-Myb), M84918 (MyoD), 2006293A (NF-κB), NP 853568 (SP6 RNA polymerase), AAB28111 (T7 RNA polymerase), NP 523301 (T3 RNA polymerase), AF364604 (HIF-1), and X63547 (TRE).

As used herein, "transcriptional activator regions," including grammatical variations thereof, means protein sequences that, when tethered to DNA near a promoter, activate transcription by contacting targets in the transcriptional machinery (see, e.g., Xiangyang et al., Proc Natl Acad Sci USA 60 (2000) 97:1988-1992). Activator regions, characterized by having an excess of acidic amino acid residues, are found in a wide array of eukaryotic activators, including the yeast activators Gal4, GCN4, and the herpesvirus activator VP16.

As used herein, "construct," including grammatical variations thereof, means nucleic acid sequence elements arranged in a definite pattern of organization such that the expression of

6

genes/gene products that are operably linked to these elements can be predictably controlled. In a related aspect, a wide variety of heterologous sequences may be included in the construct, including, but not limited to, for example, sequences which encode growth factors, cytokines, chemokines, lymphokines, toxins, prodrugs, antibodies, antigens, ribozymes, as well as antisense sequences. In another related aspect, such heterologous sequences encode proteins which can serve as therapeutic modalities.

As used herein, "vector," including grammatical variations thereof, means the DNA of any transmissible agent (e.g., plasmid or virus) into which a segment of foreign DNA can be spliced in order to introduce the foreign DNA into host cells to promote its replication and/or transcription.

As disclosed herein, a vector comprising a construct is useful for identifying translational enhancer elements. In one embodiment, the construct is contained in a vector, which generally is an expression vector that contains certain components, but otherwise can vary widely in sequence and in functional element content. The vector also can contain sequences that facilitate recombinant DNA manipulations, including, for example, elements that allow propagation of the vector in a particular host cell (e.g., a bacterial cell, insect cell, yeast cell, or mammalian cell), selection of cells containing the vector (e.g., antibiotic resistance genes for selection in bacterial or mammalian cells), and cloning sites for introduction of reporter genes or the elements to be examined (e.g., restriction endonuclease sites or recombinase recognition sites).

Preferably, constructs as envisaged provide the advantage that the activity of an oligonucleotide can be examined in the context or milieu of the whole eukaryotic chromosome. A chromosome offers unique and complex regulatory features with respect to the control of gene expression, including translation. As such, it is advantageous to have a system and method for obtaining regulatory oligonucleotides that function in the context of a chromosome. Thus, a method of the invention can be practiced such that integration of the expression vector into the eukaryotic host cell chromosome occurs, forming a stable construct prior to selection for an expressed reporter molecule.

A vector comprising a construct as envisaged can be integrated into a chromosome by a variety of methods and under a variety of conditions. Thus, the present invention should not be construed as limited to the exemplified methods. Shotgun transfection, for example, can result in stable integration if selection pressure is maintained upon the transfected cell through several generations of cell division, during which time the transfected nucleic acid construct becomes stably integrated into the cell genome. Directional vectors, which can integrate into a host cell chromosome and form a stable integrant, also can be used. These vectors can be based on targeted homologous recombination, which restricts the site of integration to regions of the chromosome having the 55 homology, and can be based on viral vectors, which can randomly associate with the chromosome and form a stable integrant, or can utilize site specific recombination methods and reagents such as a lox-Cre system and the like.

Shotgun transfections can be accomplished by a variety of well known methods, including, for example, electroporation, calcium phosphate mediated transfection, DEAE dextran mediated transfection, a biolistic method, a lipofectin method, and the like. For random shotgun transfections, the culture conditions are maintained for several generations of cell division to ensure that a stable integration has resulted and, generally, a selective pressure also is applied. A viral vector based integration method also can be used and pro-

vides the advantage that the method is more rapid and establishes a stable integration by the first generation of cell division. A viral vector based integration also provides the advantage that the transfection (infection) can be performed at a low vector:cell ratio, which increases the probability of 5 single copy transfection of the cell. A single copy expression vector in the cell during selection increases the reliability that an observed regulatory activity is due to a particular oligonucleotide, and facilitates isolation of such an oligonucleotides.

Reference is made herein to techniques commonly known in the art. Guidance in the application of such techniques can be found, e.g., in Ausubel et al. eds., 1995, Current Protocols In Molecular Biology, and in Sambrook et al., 1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Labo- 15 ratory Press, NY, the contents of which are incorporated herein by reference.

Previous studies have generated synthetic IRESes containing multiple individual IRES elements and showed that this multimerization led to higher, and in some cases exponential. 20 increases in IRES activity. To facilitate the discovery process, a number of methods to screen for IRES elements in mammalian cells and in yeast have been developed. In all of these methods, dicistronic mRNAs containing a library of random were expressed in cells, and those cells containing IRES elements were identified on the basis of the expression of the second cistron. The mammalian methods used a fluorescent reporter protein as the second cistron, and positive cells were identified with FACS. However, a limitation of these methods 30 was that the activities of individual IRES elements were relatively low, leading to a large number of false positive cells.

To circumvent this signal-to-noise problem, the present invention describes a positive feedback based system where one cistron encoding a TEE containing transcription factor 35 triggers a positive feedback loop in which the transcription factor binds to a select sequence in the upstream promoter of the cistron encoding the factor and one or more cistrons encoding an mRNA of interest, thereby increasing the transcription of both mRNAs. More mRNA results in more tran- 40 scription factor, leading to ever-increasing amounts of both the transcription factor and protein of interest mRNA and the encoded proteins.

In one embodiment, the vector system is a translation enhancer-driven positive feedback vector (e.g., see FIG. 1). In 45 one aspect, a construct expresses two mRNAs: one encoding a protein of interest which may be a reporter protein and the other encoding a transcription factor. The transcription of both mRNAs is driven by minimal promoters but can be enhanced by the expression of the transcription factor via 50 binding sites for the transcription factor that are located in the promoters of both genes. A small amount of transcription factor mRNA is expressed from the minimal promoter but the translation of this mRNA is blocked by an obstacle in the 5' leader of the mRNA encoding the transcription factor. This 55 obstacle may be a stable stem-loop structure and/or upstream AUG initiation codons. The synthesis of this transcription factor is dependent on the presence of a translation enhancer in the mRNA encoding this factor.

The translational enhancer can be located in the 5' leader of 60 the mRNA, downstream of the inhibitory elements but upstream of the initiation codon, or it may be located in the 3' untranslated region (UTR). In one aspect, the TEE is situated in the 5' leader sequence which is contained within a cistron.

Utilization of this vector system may require that the 65 encoded transcription factor not be expressed in the cells of interest. For example, a transcription factor (e.g., Gal4/

Vp16), that contains the DNA binding domain of the yeast GAL4 transcription factor is suitable for use in mammalian cells because mammalian genes do not appear to be targets of this transcription factor. Other suitable transcription factors include, but are not limited to, those that are expressed endogenously at very low levels, or are absent in the cells of interest. For example, bacteriophage specific-RNA polymerases (e.g., T7, T3, and SP6 RNA polymerases) are suitable for use in both mammalian cells and yeast. The genes as envisaged can be encoded by one or more vectors.

In one embodiment, the vector system can be used to identify a TEE. An oligonucleotide to be examined for translational activity can be operatively linked to an expressible polynucleotide, which, for example, can encode a reporter molecule. As used herein, the term "operatively linked" means that a regulatory element, which can be a synthetic regulatory oligonucleotide or an oligonucleotide to be examined for such activity, is positioned with respect to a translatable nucleotide sequence such that the regulatory element can affect its regulatory activity. An oligonucleotide having translational enhancer activity generally is positioned within about 1 to 500 nucleotides, particularly within about 1 to 100 nucleotides of a translation start site.

A library of randomized oligonucleotides to be examined nucleotide sequences in the intercistronic sequences (ICS) 25 for translational regulatory activity can be provided, and one or more individual members of the library can be cloned into multiple copies of the construct of the vector. The oligonucleotide to be examined for translational regulatory activity is introduced such that it is operatively linked to the minimal promoter element in the construct and, therefore, has the potential to function as a TEE. In this way, a library of different constructs, which can be contained in a vector, is formed, each construct differing in the introduced potential regulatory oligonucleotide sequence.

> Oligonucleotides to be examined for translational regulatory activity can be, for example, cDNA sequences encoding 5' UTRs of cellular mRNAs, including a library of such cDNA molecules. Furthermore, as disclosed herein, TEEs identified according to a method of the invention, including synthetic TEE elements, have been found to be complementary to oligonucleotide sequences of ribosomal RNA, particularly to un-base paired oligonucleotide sequences of rRNA, which are interspersed among double stranded regions that form due to hybridization of self complementary sequences within rRNA. Accordingly, oligonucleotides to be examined for translational regulatory activity, can be designed based on their being complementary to an oligonucleotide sequence of rRNA, particularly to an un-base paired oligonucleotide sequence of rRNA such as a yeast, mouse or human rRNA (e.g., see GenBank Accession Nos. V01335, X00686, X03205, each of which is incorporated herein by reference). In addition, oligonucleotides to be examined for translational regulatory activity can be a library of variegated oligonucleotide sequences (see, for example, U.S. Pat. No. 5,837,500, incorporated herein by reference), which can be based, for example, on a translational enhancer element as disclosed herein or identified using a method of the invention, or on an oligonucleotide sequence complementary to an un-base paired region of a rRNA.

> The oligonucleotides identified herein as having translational regulatory activity provide modules that can be used alone or combined with each other to produce desired activities. For example, concatemers of an identified TEE can vastly increase polypeptide expression from an associated cistron, including concatemers of 2, 5, 10, 20, 35, 50 or 75 copies of a TEE, which independently can be multiple copies of the same or different TEEs, and which can be operatively

linked adjacent to each other or separated by spacer nucleotide sequences that can vary from 1 to about 100 nucleotides in length.

A synthetic translational regulatory element can be identified by screening, for example, a library of oligonucleotides 5 containing a large number of different nucleotide sequences. The oligonucleotides can be variegated oligonucleotide sequences, which are based on but different from a known translational regulatory element, for example, an oligonucleotide complementary to an un-base paired sequence of a 10 rRNA, or can be a random oligonucleotide library. The use of randomized oligonucleotides (e.g., N18) provides the advantage that no prior knowledge is required of the nucleotide sequence, and provides the additional advantage that completely new regulatory elements can be identified. Methods 15 for making a combinatorial library of nucleotide sequences or a variegated population of nucleotide sequences are well known in the art (see, for example, U.S. Pat. No. 5,837,500; U.S. Pat. No. 5,622,699; U.S. Pat. No. 5,206,347; Scott and Smith, Science 249:386-390, 1992; Markland et al., Gene 20 109:13 19, 1991; O'Connell et al., Proc Natl Acad Sci, USA 93:5883-5887, 1996; Tuerk and Gold, Science 249:505-510, 1990; Gold et al., Ann Rev Biochem 64:763-797, 1995; each of which is incorporated herein by reference).

A synthetic TEE oligonucleotide, which can be obtained using a method of the invention, can increase or decrease the level of translation of an mRNA containing the oligonucleotide. In particular, a TEE oligonucleotide can selectively regulate translation in a context specific manner, depending, for example, on the cell type for expression, the nature of the 30 TEE sequence, or the presence of other effector sequences in the construct.

A regulatory element can be of various lengths from a few nucleotides to several hundred nucleotides. Thus, the length of an oligonucleotide in a library of oligonucleotides to be 35 screened can be any length, including oligonucleotides as short as about 6 nucleotides or as long as about 100 nucleotides or more. Generally, the oligonucleotides to be examined are about 6, 12, 18, 30 nucleotides or the like in length. The complexity of the library, i.e., the number of unique 40 members, also can vary, although preferably the library has a high complexity so as to increase the likelihood that regulatory sequences are present. Libraries can be made using any method known in the art, including, for example, using an oligonucleotide synthesizer and standard oligonucleotide 45 synthetic chemistry. Where the oligonucleotides are to be incorporated into a vector, the library complexity depends in part on the size of the expression vector population being used to clone the random library and transfect cells. Thus, a theoretical limitation for the complexity of the library also relates 50 to utilization of the library content by the recipient expression vector and by the transfected cells, as well as by the complexity that can be obtained using a particular method of oligonucleotide synthesis.

To identify TEEs, libraries of constructs that contain either random nucleotide sequences or cDNA segments of 5' leaders of mRNAs are introduced into cells. Cells containing a construct with a TEE upstream of the transcription factor will trigger the positive feedback mechanism and produce large amounts of both proteins. If one of the proteins is a reporter forcein, its activity can be readily assayed. For example, if the reporter is enhanced green fluorescent protein (EGFP), fluorescence activated cell sorting (FACS) can be used to identify cells expressing the fluorescent protein. In a preferred embodiment of the present invention, the means of detecting the presence of GFP in transfected cells is by fluorescence microscopy and by FACS. However, it will be readily under-

10

stood by those of skill in the art that other means for detecting the presence of GFP may also be used in the practice of the present invention. The means of detecting GFP or of tracking or monitoring cells which have been transfected with a construct of the present invention may be any means whereby the presence GFP protein is detectable. For example, optical imaging, infrared imaging of gene expression, and flow cytometry may also be used.

In a related aspect, other reporter proteins can include, but are not limited to, enhanced yellow fluorescent protein (EYFP), enhanced cyan fluorescent protein (ECFP), luciferase, β -galactosidase, β -glucuronidase, alkaline phosphatase, and chloramphenicol acetyltransferase.

In a related aspect, such a vector can be used to identify sequences that enhance translation by various mechanisms, including but not limited to, cap-independent and cap-dependent mechanisms.

In one aspect, the vector system as envisaged can be used to overexpress another protein of interest. In a related aspect, the mRNA encoding the transcription factor will contain a known TEE. Such a system may be suitable for the batch production of proteins, where the transcription factor is under the control of a regulatable promoter, so that cells can be grown to a large volume before the positive feed back mechanisms and large scale protein production are induced by, for example, an inducing agent.

The term "inducing agent" is used to refer to a chemical, biological or physical agent that effects translation from an inducible translational regulatory element. In response to exposure to an inducing agent, translation from the element generally is initiated de novo or is increased above a basal or constitutive level of expression. Such induction can be identified using the methods disclosed herein, including detecting an increased level of a reporter polypeptide encoded by the expressible polynucleotide that is operatively linked to the TEE. An inducing agent can be, for example, a stress condition to which a cell is exposed, for example, a heat or cold shock, a toxic agent such as a heavy metal ion, or a lack of a nutrient, hormone, growth factor, or the like; or can be exposure to a molecule that affects the growth or differentiation state of a cell such as a hormone or a growth factor. As disclosed herein, the translational regulatory activity of an oligonucleotide can be examined in cells that are exposed to particular conditions or agents, or in cells of a particular cell type, and oligonucleotides that have translational regulatory activity in response to and only under the specified conditions or in a specific cell type can be identified.

In another embodiment, a vector system is envisaged which expresses a third mRNA that encodes a protein that can increase the translation of the other two encoded mRNAs by decreasing the translation of cellular mRNAs (FIG. 2). In one aspect, the expression of the third protein decreases competition from the cellular mRNAs and leads to an increased signal-to-noise ratio in the selection application.

In a related aspect, the third protein may be a viral protein that blocks translation of host mRNAs and thereby decreases the competition arising from these mRNAs. Viral proteins include, but are not limited to, NSP3, L-proteinase, or proteinase 2A. For example, without being bound to theory, the NSP3 protein blocks cap-dependent translation by binding to the eukaryotic initiation factor 4G (eIF4G) with high affinity, displacing the poly(A) binding protein, disrupting mRNA circulation, and dramatically decreasing efficiency. In this scenario, the three vector encoded mRNAs contain features that prevent their translation from being blocked. For example, where a TEE does not require eIF4G for activity, such an element would be resistant to NSP3 (e.g., Gtx IRES)

elements and the Cricket paralysis virus IRES). In a related aspect, the third protein can be under the control of the encoded transcription factor or under the control of an inducible promoter.

In one embodiment, the vector system expresses a gene 5 product or protein of interest and a third protein, where the third protein blocks host protein synthesis (FIG. 3). In a related aspect, the gene product or protein of interest will contain features that prevent their translation from being blocked. In another related aspect, the genes are transcribed by either a constitutive promoter or an inducible promoter.

A kit of the invention is also envisaged. Such a kit can contain a packaging material, for example, a container having a TEE containing oligonucleotide according to the invention and a label that indicates uses of the oligonucleotide for 15 regulating translation of a polynucleotide in an expression vector or other expression construct. In one embodiment, the system, preferably in kit form, provides an integrating expression vector for use in selecting a TEE oligonucleotide using a method as disclosed herein. Such a kit can contain a packaging material, which comprises a container having an integrating expression vector and a label that indicates uses of the vector for selecting oligonucleotide sequences capable of regulatory function.

Instructions for use of the packaged components also can 25 be included in a kit of the invention. Such instructions for use generally include a tangible expression describing the components, for example, a TEE containing oligonucleotide, including its concentration and sequence characteristics, and can include a method parameter such as the manner by which 30 the reagent can by utilized for its intended purpose. The reagents, including the oligonucleotide, which can be contained in a vector or operably linked to an expressible polynucleotide, can be provided in solution, as a liquid dispersion, or as a substantially dry powder, for example, in a lyophilized 35 form. The packaging materials can be any materials customarily utilized in kits or systems, for example, materials that facilitate manipulation of the regulatory oligonucleotides and, if present, of the vector, which can be an expression vector. The package can be any type of package, including a 40 solid matrix or material such as glass, plastic (e.g., polyethylene, polypropylene, and polycarbonate), paper, foil, or the like, which can hold within fixed limits a reagent such as a TEE containing oligonucleotide or vector. Thus, for example, a package can be a bottle, vial, plastic and plastic-foil lami- 45 nated envelope, or the like container used to contain a contemplated reagent. The package also can comprise one or more containers for holding different components of the kit.

The following examples are intended to illustrate but not limit the invention.

EXAMPLES

Example 1

Experimental Procedures/Materials

Construction of Vectors

The constructs used in the present invention express one or more cistronic mRNAs that encode a transcription factor, 60 protein of interest and/or a protein blocking host protein synthesis. Promoters used to drive transcription of the cistronic mRNAs consist of a minimal promoter (TATA box) or regulatable promoter, alone or in combination with one or more other transcriptional elements, including upstream activating sequences (UAS) and bacteriophage specific promoters. For feedback vectors, a first cistron would comprise a

12

gene encoding a transcription factor, which is inserted downstream from a known or unknown TEE. One such construct, containing a known TEE, would comprise a TATA box promoter element, one or more UAS sequences, and one or more Gtx modules upstream from a cistron encoding Gal4/Vp16.

Example 2

Positive Feedback Reporter Vector for Identifying TEE Elements

Construction

As shown in FIG. 4, the promoters used to drive transcription in this example comprise a minimal promoter (TATA box) in combination with four copies of the GAL4 upstream activating sequence (UAS). The first transcription unit encodes the GAL4/VP16 fusion protein and the second transcription unit encodes EGFP. The TEE insertion site (denoted by "N" in FIG. 4) contains nucleotides from a library of 18 random nucleotides. The vector backbone is based on plasmid pHRG-B (Promega, Madison, Wis.). The original BamHI site in pHRG-B was mutated so that both EcoRI and BamHI sites in the TEE insertion site were unique. The random N₁₈ fragments are cloned into this reporter vector by using the EcoRI and BamHI restriction sites.

Cell Culture and Transfection Analysis

Reporter constructs are transfected into Chinese hamster ovary cells (CHO) (2×10^4) by using FuGENE 6^{TM} (Roche, Alameda, Calif.). Transfection efficiencies are normalized by co-transfection with a LacZ reporter gene construct (pC-MV β , Clontech, Mountainview, Calif.). Cells are harvested 3 days after transfection and sorted by FACS on a FACSVantage SETM (Becton Dickinson, Franklin Lakes, N.J.) (Also, see Owens et al., Proc Natl Acad Sci USA (2004) 101:9590-9594). β -galactosidase assays may be performed by methods known in the art. For example, see Chappell et al., Proc Natl Acad Sci USA (2000) 97:1536-1541.

Double-stranded oligonucleotides containing N18 sequences are cloned into the TEE assay site of the positive feedback vector by using EcoRI and BamHI restriction sites. Overnight ligations are performed using T4 DNA ligase at 16° C. The resulting ligation mix is transfected into CHO cells, and FACS analysis is performed as above. For each FACS analysis, the first 100,000 cells are analyzed and a sorting window is drawn to select the cells with the highest EGFP expression. DNA is extracted from cells recovered by FACS and PCR reactions are carried-out by using primers to sequences that flank the EcoRI and BamHI restriction sites. After digestion with both EcoRI and BamHI restriction enzymes, the resulting fragments are re-cloned into the same amplification vector and retested.

For determining the number of plasmids per transfected cell, equal amounts of two plasmids are mixed, CMV-EGFP and CMV-enhanced cyan fluorescent protein (CMV-ECFP; Clontech, Mountainview, Calif.). The cloning vector pBluescript-KS IITM (Stratagene, La Jolla, Calif.) is used as filler for co-transfection. CHO cells are transfected with the different mixtures and FACS analysis is performed 2 days later to assess the expression of both EGFP and ECFP.

All of the compositions and methods disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While the compositions and methods of this invention have been described in terms of illustrative embodiments, it will be apparent to those of skill in the art that variations may be applied to the composition, methods and in the steps or in the sequence of steps of the methods described herein without

departing from the concept, spirit, and scope of the invention. More specifically, it will be apparent that certain agents which are both chemically and physiologically related may be substituted for the agents described herein while the same or similar results would be achieved. Although the invention has been described with reference to the above examples, it will be understood that modifications and variations are encompassed within the spirit and scope of the invention.

SEQUENCE LISTING

```
<160> NUMBER OF SEQ ID NOS: 3
<210> SEQ ID NO 1
<211> LENGTH: 5256
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Synthetic construct
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (190)..(207)
<223> OTHER INFORMATION: n is a, c, g, or t
<220> FEATURE:
<221> NAME/KEY: CDS
<222> LOCATION: (214)..(897)
<220> FEATURE:
<221> NAME/KEY: CDS
<222> LOCATION: (1425) .. (2141)
<400> SEQUENCE: 1
ggtaccgagc tcaagcttcg gagtactgtc ctccgagcgg agtactgtcc tccgagcgga
                                                                         60
qtactqtcct ccqaqcqqaq tactqtcctc cqttcqaaaq cqqacccctq qcaqqaqqaa
                                                                        120
ggtcagcaga gctgctgata agagccgtat aaagagggtt ccgctcgcaa agatctatgg
                                                                        180
catgaatton nnnnnnnnn nnnnnnnngga too atg gtg aag otg tot tot ato
                                                                        234
                                      Met Val Lys Leu Ser Ser Ile
gaa caa gca tgc gat att tgc cga ctt aaa aag ctc aag tgc tcc aaa
                                                                        282
Glu Gln Ala Cys Asp Ile Cys Arg Leu Lys Lys Leu Lys Cys Ser Lys
                           15
gaa aaa ccg aag tgc gcc aag tgt ctg aag aac aac tgg gag tgt cgc
                                                                        330
Glu Lys Pro Lys Cys Ala Lys Cys Leu Lys Asn Asn Trp Glu Cys Arg
tac tot coc aaa acc aaa agg tot cog ctg act agg gca cat ctg aca
                                                                        378
Tyr Ser Pro Lys Thr Lys Arg Ser Pro Leu Thr Arg Ala His Leu Thr
gaa gtg gaa tca agg cta gaa aga ctg gaa cag cta ttt cta ctg att
Glu Val Glu Ser Arg Leu Glu Arg Leu Glu Gln Leu Phe Leu Leu Ile
ttt cct cga gaa gac ctt gac atg att ttg aaa atg gat tct tta cag
                                                                        474
Phe Pro Arg Glu Asp Leu Asp Met Ile Leu Lys Met Asp Ser Leu Gln
gat ata aaa gca ttg tta aca gga tta ttt gta caa gat aat gtg aat
                                                                        522
Asp Ile Lys Ala Leu Leu Thr Gly Leu Phe Val Gln Asp Asn Val Asn
aaa gat gcc gtc aca gat aga ttg gct tca gtg gag act gat atg cct Lys Asp Ala Val Thr Asp Arg Leu Ala Ser Val Glu Thr Asp Met Pro
                                                                        570
                        110
cta aca ttg aga cag cat aga ata agt gcg aca tca tca tcg gaa gag
                                                                        618
Leu Thr Leu Arg Gln His Arg Ile Ser Ala Thr Ser Ser Ser Glu Glu
                    125
                                         130
agt agt aac aaa ggt caa aga cag ttg act gta tcg att aaa gtc gcc
                                                                        666
Ser Ser Asn Lys Gly Gln Arg Gln Leu Thr Val Ser Ile Lys Val Ala
                140
                                     145
ccc ccg acc gat gtc agc ctg ggg gac gag ctc cac tta gac ggc gag
                                                                        714
Pro Pro Thr Asp Val Ser Leu Gly Asp Glu Leu His Leu Asp Gly Glu
            155
gac gtg gcg atg gcg cat gcc gac gcg cta gac gat ttc gat ctg gac
                                                                        762
```

-continued

Asp Val Ala Met Ala His Ala Asp Ala Leu Asp Asp Phe Asp Leu Asp 170 175 180	
atg ttg ggg gac ggg gat tcc ccg ggg ccg gga ttt acc ccc cac gac Met Leu Gly Asp Gly Asp Ser Pro Gly Pro Gly Phe Thr Pro His Asp 185 190 195	810
tcc gcc ccc tac ggc gct ctg gat atg gcc gac ttc gag ttt gag cag Ser Ala Pro Tyr Gly Ala Leu Asp Met Ala Asp Phe Glu Phe Glu Gln 200 205 210 215	858
atg ttt acc gat gcc ctt gga att gac gag tac ggt ggg taaccgcggg Met Phe Thr Asp Ala Leu Gly Ile Asp Glu Tyr Gly Gly 220 225	907
ctagagtcgg ggcggccggc cgcttcgagc agacatgata agatacattg atgagtttgg	967
acaaaccaca actagaatgc agtgaaaaaa atgctttatt tgtgaaattt gtgatgctat	1027
tgctttattt gtaaccatta taagctgcaa taaacaagtt aacaacaaca attgcattca	1087
ttttatgttt caggttcagg gggaggtgtg ggaggttttt taaagcaagt aaaacctcta	1147
caaatgtggt aaaatcgata aggatcgatc cgtcgagatc tgcgatctaa gtaagcttgg	1207
ctgcaggtcg acggatcgga gtactgtcct ccgagcggag tactgtcctc cgagcggagt	1267
actgtcctcc gagcggagta ctgtcctccg agcggacccc tggcaggagg aaggtcagca gagctgctga taagagccgt ataaagaggg ttccgctcat ggcaaggggc agtggtctcg	1327
ggatctgage ttggcattee ggtactgttg gtaaace atg gtg age aag gge gag	1442
Met Val Ser Lys Gly Glu 230	
gag ctg ttc acc ggg gtg gtg ccc atc ctg gtc gag ctg gac ggc gac Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val Glu Leu Asp Gly Asp 235 240 245 250	1490
gta aac ggc cac aag ttc agc gtg tcc ggc gag ggc gag ggc gat gcc Val Asn Gly His Lys Phe Ser Val Ser Gly Glu Gly Glu Gly Asp Ala 255 260 265	1538
acc tac ggc aag ctg acc ctg aag ttc atc tgc acc acc ggc aag ctg Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys Thr Thr Gly Lys Leu 270 275 280	1586
ccc gtg ccc tgg ccc acc ctc gtg acc acc ctg acc tac ggc gtg cagPro Val Pro Trp Pro Thr Leu Val Thr Thr Leu Thr Tyr Gly Val Gln285290295	1634
tgc ttc agc cgc tac ccc gac cac atg aag cag cac gac ttc ttc aag Cys Phe Ser Arg Tyr Pro Asp His Met Lys Gln His Asp Phe Phe Lys 300 305 310	1682
tcc gcc atg ccc gaa ggc tac gtc cag gag cgc acc atc ttc ttc aag Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg Thr Ile Phe Phe Lys 315 320 325 330	1730
gac gac ggc aac tac aag acc cgc gcc gag gtg aag ttc gag ggc gac Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val Lys Phe Glu Gly Asp 335 340 345	1778
acc ctg gtg aac cgc atc gag ctg aag ggc atc gac ttc aag gag gac Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp 350 355 360	1826
ggc aac atc ctg ggg cac aag ctg gag tac aac tac aac agc cac aac Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn Tyr Asn Ser His Asn 365 370 375	1874
gtc tat atc atg gcc gac aag cag aag aac ggc atc aag gtg aac ttc Val Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly Ile Lys Val Asn Phe 380 385 390	1922
aag atc cgc cac aac atc gag gac ggc agc gtg cag ctc gcc gac cac Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val Gln Leu Ala Asp His 395 400 405 410	1970

-continued

tac cag cag aac acc ccc atc ggc gac ggc ccc gtg ctg ctg ccc gac Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro Val Leu Leu Pro Asp 415 420 425	2018
aac cac tac ctg agc acc cag tcc gcc ctg agc aaa gac ccc aac gag Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser Lys Asp Pro Asn Glu 430 435 440	2066
aag cgc gat cac atg gtc ctg ctg gag ttc gtg acc gcc gcg gat c Lys Arg Asp His Met Val Leu Leu Glu Phe Val Thr Ala Ala Gly Ile 445 450 455	2114
act ctc ggc atg gac gag ctg tac aag taacgcgttg actaagctat Thr Leu Gly Met Asp Glu Leu Tyr Lys 460 465	2161
ggcgcgcact aggggctaga gtcggggcgg ccggccgctt cgagcagaca tgataagata	2221
cattgatgag tttggacaaa ccacaactag aatgcagtga aaaaaatgct ttatttgtga	2281
aatttgtgat getattgett tatttgtaac cattataage tgcaataaac aagttaacaa	2341
caacaattgc attcatttta tgtttcaggt tcagggggag gtgtgggagg ttttttaaag	2401
caagtaaaac ctctacaaat gtggtaaaat cgataaggat cgatccgtcg accgatgccc	2461
ttgagageet teaaceeagt cageteette eggtgggege ggggeatgae tategtegee	2521
gcacttatga ctgtcttctt tatcatgcaa ctcgtaggac aggtgccggc agcgctcttc	2581
egetteeteg eteaetgaet egetgegete ggtegttegg etgeggegag eggtateage	2641
tcactcaaag gcggtaatac ggttatccac agaatcaggg gataacgcag gaaagaacat	2701
gtgagcaaaa ggccagcaaa aggccaggaa ccgtaaaaag gccgcgttgc tggcgttttt	2761
ccataggete egececeetg aegageatea caaaaatega egeteaagte agaggtggeg	2821
aaacccgaca ggactataaa gataccaggc gtttccccct ggaagctccc tcgtgcgctc	2881
teetgtteeg accetgeege ttaceggata cetgteegee ttteteeett egggaagegt	2941
ggcgctttct catagctcac gctgtaggta tctcagttcg gtgtaggtcg ttcgctccaa	3001
gctgggctgt gtgcacgaac cccccgttca gcccgaccgc tgcgccttat ccggtaacta	3061
tegtettgag tecaaceegg taagacaega ettategeea etggeageag ceaetggtaa	3121
caggattagc agagcgaggt atgtaggcgg tgctacagag ttcttgaagt ggtggcctaa	3181
ctacggctac actagaagaa cagtatttgg tatctgcgct ctgctgaagc cagttacctt	3241
cggaaaaaga gttggtagct cttgatccgg caaacaaacc accgctggta gcggtggttt	3301
ttttgtttgc aagcagcaga ttacgcgcag aaaaaaagga tctcaagaag atcctttgat	3361
cttttctacg gggtctgacg ctcagtggaa cgaaaactca cgttaaggga ttttggtcat	3421
gagattatca aaaaggatct tcacctagat ccttttaaat taaaaatgaa gttttaaatc	3481
aatctaaagt atatatgagt aaacttggtc tgacagttac caatgcttaa tcagtgaggc	3541
acctatetea gegatetgte tatttegtte atceatagtt geetgaetee eegtegtgta	3601
gataactacg atacgggagg gcttaccatc tggccccagt gctgcaatga taccgcgaga	3661
occaegetea eeggeteeag atttateage aataaaceag eeageeggaa gggeegageg	3721
cagaagtggt cctgcaactt tatccgcctc catccagtct attaattgtt gccgggaagc	3781
tagagtaagt agttegeeag ttaatagttt gegeaaegtt gttgeeattg etacaggeat	3841
cgtggtgtca cgctcgtcgt ttggtatggc ttcattcagc tccggttccc aacgatcaag	3901
gcgagttaca tgatccccca tgttgtgcaa aaaagcggtt agctccttcg gtcctccgat	3961
ogttgtcaga agtaagttgg cogcagtgtt atcactcatg gttatggcag cactgcataa	4021
ttetettaet gteatgeeat eegtaagatg ettttetgtg aetggtgagt aeteaaceaa	4081

-continued

gtca	attct	ga q	gaata	agtgt	a to	gegge	cgaco	gag	gttgo	ctct	tgc	ccgg	gt o	caata	acggga	41	41
taat	acco	gcg (ccaca	atago	ca ga	aactt	taaa	a agt	gata	catc	att	ggaaa	aac q	gttct	teggg	42	01
gcga	aaaa	ctc 1	tcaaq	ggato	et ta	accgo	ctgtt	gag	gatco	cagt	tcga	atgta	aac o	ccact	cgtgc	42	61
acco	caact	ga 1	tctt	cagca	at c	ttta	acttt	cad	ccago	gtt	tct	gggt	gag o	caaaa	aacagg	43	21
aagg	gcaaa	aat 🤅	gccg	caaaa	aa aq	gggaa	ataaq	g ggd	cgaca	acgg	aaat	gtt	gaa t	cacto	catact	43	81
ctto	ccttt	tt (caata	attat	t ga	aagca	attta	a tca	agggt	tat	tgt	ctcat	ga ç	gegga	atacat	44	41
attt	gaat	gt a	attta	agaaa	aa at	caaac	caaat	agg	gggtt	ccg	cgca	acatt	tc o	cccga	aaagt	45	01
gcca	accto	gac q	gege	ectgt	a go	egge	gcatt	aag	gegeg	ggcg	ggt	gtggt	.gg t	tacç	gcgcag	45	61
cgt	gacco	get a	acact	tgc	a go	egeed	ctago	geo	ccgct	cct	ttc	gettt	ct t	ccct	tcctt	46	21
tcto	gcca	acg 1	ttcg	cggo	et ti	caaa	egtea	a ago	ctcta	aaat	cggg	gggct	ccc o	ettta	agggtt	46	81
ccga	attta	agt q	gcttt	acgo	gc a	cctc	gacco	caa	aaaa	actt	gatt	aggg	gtg a	atggt	tcacg	47	41
tagt	ggg	cca 1	taga	cctga	at a	gacgo	gttt	teg	gaaat	ttg	acgt	tgga	agt o	ccacç	gttctt	48	01
taat	agto	gga (ctctt	gtto	cc aa	aacto	ggaad	c aac	cacto	caac	ccta	atcto	cgg t	ctat	tcttt	48	61
tgat	ttat	caa 🤉	gggat	tttç	ge eq	gattt	cgg	c cta	attg	gtta	aaaa	aatga	agc t	gatt	taaca	49	21
aaaa	attta	aac q	gcgaa	attt	a a	caaaa	atatt	aac	cgctt	aca	attt	gcca	att o	egeca	attcag	49	81
gct	gegea	aac 1	tgtt	gggaa	ag g	gcgat	cggt	geç	gggc	ctct	tcg	ctatt	tac ç	gccaç	gcccaa	50	41
											01						
atatetttat titeattaea teigigigit ggittitigi gigaategat agiaetaaea 5:										51	61						
tacgctctcc atcaaaacaa aacgaaacaa aacaaactag caaaataggc tgtccccagt 5										52	21						
gcaa	agtgo	cag q	gtgc	cagaa	ac at	ttct	cctat	c cga	ata							52	56
<210> SEQ ID NO 2 <211> LENGTH: 467 <212> TYPE: PRT <213> ORGANISM: Artificial sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic Construct																	
		_	NCE:														
Met 1	Val	Lys	Leu	Ser 5	Ser	Ile	Glu	Gln	Ala 10	Cys	Asp	Ile	Cys	Arg 15	Leu		
Lys	Lys	Leu	Lys 20	Сув	Ser	Lys	Glu	Lys 25	Pro	Lys	Cys	Ala	Lys 30	Cys	Leu		
Lys	Asn	Asn 35	Trp	Glu	Сув	Arg	Tyr 40	Ser	Pro	Lys	Thr	Lys 45	Arg	Ser	Pro		
Leu	Thr 50	Arg	Ala	His	Leu	Thr 55	Glu	Val	Glu	Ser	Arg 60	Leu	Glu	Arg	Leu		
Glu 65	Gln	Leu	Phe	Leu	Leu 70	Ile	Phe	Pro	Arg	Glu 75	Asp	Leu	Asp	Met	Ile 80		
Leu	Lys	Met	Asp	Ser 85	Leu	Gln	Asp	Ile	Lys	Ala	Leu	Leu	Thr	Gly 95	Leu		
Phe	Val	Gln	Asp 100	Asn	Val	Asn	Lys	Asp 105	Ala	Val	Thr	Asp	Arg 110	Leu	Ala		
Ser	Val	Glu 115	Thr	Asp	Met	Pro	Leu 120	Thr	Leu	Arg	Gln	His 125	Arg	Ile	Ser		

Ala Thr Ser Ser Ser Glu Glu Ser Ser Asn Lys Gly Gln Arg Gln Leu 130 135 140

Thr Val Ser Ile Lys Val Ala Pro Pro Thr Asp Val Ser Leu Gly Asp

-continued

_															
145					150					155					160
Glu	Leu	His	Leu	Asp 165	Gly	Glu	Asp	Val	Ala 170	Met	Ala	His	Ala	Asp 175	Ala
Leu	Asp	Asp	Phe 180	Asp	Leu	Asp	Met	Leu 185	Gly	Asp	Gly	Asp	Ser 190	Pro	Gly
Pro	Gly	Phe 195	Thr	Pro	His	Asp	Ser 200	Ala	Pro	Tyr	Gly	Ala 205	Leu	Asp	Met
Ala	Asp 210	Phe	Glu	Phe	Glu	Gln 215	Met	Phe	Thr	Asp	Ala 220	Leu	Gly	Ile	Asp
Glu 225	Tyr	Gly	Gly	Met	Val 230	Ser	Lys	Gly	Glu	Glu 235	Leu	Phe	Thr	Gly	Val 240
Val	Pro	Ile	Leu	Val 245	Glu	Leu	Asp	Gly	Asp 250	Val	Asn	Gly	His	Lys 255	Phe
Ser	Val	Ser	Gly 260	Glu	Gly	Glu	Gly	Asp 265	Ala	Thr	Tyr	Gly	Lys 270	Leu	Thr
Leu	Lys	Phe 275	Ile	Сув	Thr	Thr	Gly 280	Lys	Leu	Pro	Val	Pro 285	Trp	Pro	Thr
Leu	Val 290	Thr	Thr	Leu	Thr	Tyr 295	Gly	Val	Gln	Сув	Phe 300	Ser	Arg	Tyr	Pro
Asp 305	His	Met	ГÀв	Gln	His 310	Asp	Phe	Phe	Lys	Ser 315	Ala	Met	Pro	Glu	Gly 320
Tyr	Val	Gln	Glu	Arg 325	Thr	Ile	Phe	Phe	Tys	Asp	Asp	Gly	Asn	Tyr 335	Lys
Thr	Arg	Ala	Glu 340	Val	Lys	Phe	Glu	Gly 345	Asp	Thr	Leu	Val	Asn 350	Arg	Ile
Glu	Leu	Lys 355	Gly	Ile	Asp	Phe	Lys 360	Glu	Asp	Gly	Asn	Ile 365	Leu	Gly	His
Lys	Leu 370	Glu	Tyr	Asn	Tyr	Asn 375	Ser	His	Asn	Val	Tyr 380	Ile	Met	Ala	Asp
Lys 385	Gln	Lys	Asn	Gly	Ile 390	Lys	Val	Asn	Phe	Lys 395	Ile	Arg	His	Asn	Ile 400
Glu	Asp	Gly	Ser	Val 405	Gln	Leu	Ala	Asp	His 410	Tyr	Gln	Gln	Asn	Thr 415	Pro
Ile	Gly	Asp	Gly 420	Pro	Val	Leu	Leu	Pro 425	Asp	Asn	His	Tyr	Leu 430	Ser	Thr
Gln	Ser	Ala 435	Leu	Ser	Lys	Asp	Pro 440	Asn	Glu	Lys	Arg	Asp 445	His	Met	Val
Leu	Leu 450	Glu	Phe	Val	Thr	Ala 455	Ala	Gly	Ile	Thr	Leu 460	Gly	Met	Asp	Glu
Leu 465	Tyr	Lys													
	D> SE L> LE	~													
<212	2 > T	PE:	PRT												
	3 > OF 0 > FF			Art:	ific:	ial :	seque	ence							
				ORMA'	rion	: Syı	nthe	ic o	const	ruc	t				
< 400)> SI	EQUEI	ICE :	3											
Met 1	Ser	Ile	Gln	His 5	Phe	Arg	Val	Ala	Leu 10	Ile	Pro	Phe	Phe	Ala 15	Ala
Phe	Cya	Leu	Pro 20	Val	Phe	Ala	His	Pro 25	Glu	Thr	Leu	Val	30 Tàa	Val	Lys
Asp	Ala	Glu	Asp	Gln	Leu	Gly	Ala	Arg	Val	Gly	Tyr	Ile	Glu	Leu	Asp

-continued

		35					40					45			
Leu	Asn 50	Ser	Gly	Lys	Ile	Leu 55	Glu	Ser	Phe	Arg	Pro 60	Glu	Glu	Arg	Phe
Pro 65	Met	Met	Ser	Thr	Phe 70	Lys	Val	Leu	Leu	Сув 75	Gly	Ala	Val	Leu	Ser 80
Arg	Ile	Asp	Ala	Gly 85	Gln	Glu	Gln	Leu	Gly 90	Arg	Arg	Ile	His	Tyr 95	Ser
Gln	Asn	Asp	Leu 100	Val	Glu	Tyr	Ser	Pro 105	Val	Thr	Glu	ГÀа	His 110	Leu	Thr
Asp	Gly	Met 115	Thr	Val	Arg	Glu	Leu 120	Cya	Ser	Ala	Ala	Ile 125	Thr	Met	Ser
Asp	Asn 130	Thr	Ala	Ala	Asn	Leu 135	Leu	Leu	Thr	Thr	Ile 140	Gly	Gly	Pro	Lys
Glu 145	Leu	Thr	Ala	Phe	Leu 150	His	Asn	Met	Gly	Asp 155	His	Val	Thr	Arg	Leu 160
Asp	Arg	Trp	Glu	Pro 165	Glu	Leu	Asn	Glu	Ala 170	Ile	Pro	Asn	Asp	Glu 175	Arg
Asp	Thr	Thr	Met 180	Pro	Val	Ala	Met	Ala 185	Thr	Thr	Leu	Arg	Lys 190	Leu	Leu
Thr	Gly	Glu 195	Leu	Leu	Thr	Leu	Ala 200	Ser	Arg	Gln	Gln	Leu 205	Ile	Asp	Trp
Met	Glu 210	Ala	Asp	Lys	Val	Ala 215	Gly	Pro	Leu	Leu	Arg 220	Ser	Ala	Leu	Pro
Ala 225	Gly	Trp	Phe	Ile	Ala 230	Asp	Lys	Ser	Gly	Ala 235	Gly	Glu	Arg	Gly	Ser 240
Arg	Gly	Ile	Ile	Ala 245	Ala	Leu	Gly	Pro	Asp 250	Gly	Lys	Pro	Ser	Arg 255	Ile
Val	Val	Ile	Tyr 260	Thr	Thr	Gly	Ser	Gln 265	Ala	Thr	Met	Asp	Glu 270	Arg	Asn
Arg	Gln	Ile 275	Ala	Glu	Ile	Gly	Ala 280	Ser	Leu	Ile	ГАз	His 285	Trp		

What is claimed is:

- 1. An multicistronic expression vector suitable for use in a mammalian host cell comprising the following polynucleotide sequences:
 - a) an isolated first polynucleotide sequence comprising from 5' to 3' direction:
 - (i) four copies of the GAL4 upstream activating sequence (UAS) comprising nucleotides 19-35, 38-54, 57-73, and 76-92 of SEQ ID NO: 1 and two or more first transcriptional elements comprising a TATA box promoter element comprising nucleotides 148-153 of SEQ ID NO:1, (ii) one or more first translational enhancer elements (TEE) comprising one N18 random oligonucleotide sequence comprising nucleotides 190-207 of SEQ ID NO: 1, and (iii) a first cistron comprising nucleotides 214-897 of SEQ ID NO:1 and encoding a transcription factor, wherein the transcription factor is yeast regulatory protein GAL4/viral protein 16 (GAL4/VP 16), and wherein said N18 is operably linked to the first cistron and increases the amount of GAL4/viral protein induced per unit mRNA; and
 - b) an isolated second polynucleotide sequence comprising from 5' to 3' direction:
 - (i) at least one second transcriptional element comprising a TATA box promoter element comprising nucleotides

1347-1352 of SEQ ID NO:1 and four copies of the GAL/UAS comprising nucleotides 1224-1240, 1243-1259, 1262-1278 and 1281-1297 of SEQ ID NO: 1, (ii) at least one second TEE comprising internal ribosome entry sites (IRES) elements, and (iii) a second cistron encoding a second gene product, wherein said TEE is operably linked to the second cistron,

24

- wherein said first and second polynucleotide sequences are functionally linked, wherein upon expression of the GAL4/VP16 in the mammalian host cell, GAL4/VP16 binds to GAL4 UAS sites in the transcriptional element promoters of the first and second polynucleotide sequences, thereby amplifying the transcription of at least the first cistron of the first polynucleotide sequence and the second cistron of the second polynucleotide sequence.
- 2. The vector of claim 1, further comprising a third polynucleotide sequence comprising a third cistron encoding a third gene product.
- 3. The vector of claim 1, wherein at least one of the two or more first transcriptional elements is not the target of transcription factors endogenous to the host mammalian cell.
- **4**. The vector of claim **1**, wherein the second gene product is a reporter protein, therapeutic protein, an enzyme, an antigen, an antibody, or a structural protein.

23

- 5. The vector of claim 4, wherein the reporter protein is selected from the group consisting of GFP, luciferase, β -galactosidase, β -glucuronidase, alkaline phosphatase, chloramphenicol acetyltransferase, ECFP, EGFP, and EYFP.
- **6**. The vector of claim **2**, wherein the third gene product 5 blocks host protein synthesis.
- 7. The vector of claim 6, wherein the third gene product is rotavirus non-structural protein (NSP3), L-proteinase, or proteinase 2A.
- **8**. The vector of claim **6**, wherein at least one of the first or 10 second TEEs is resistant to the activity of the product which blocks host protein synthesis.

* * * * *